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ABSTRACT
We present our cosmic shear analysis of GEMS, one of the largest wide-field surveys ever
undertaken by the Hubble Space Telescope. Imaged with the Advanced Camera for Surveys
(ACS), GEMS spans 795 square arcmin in the Chandra Deep FieldSouth. We detect weak
lensing by large-scale structure in high resolution F606W GEMS data from∼ 60 resolved
galaxies per square arcminute. We measure the two-point shear correlation function, the top-
hat shear variance and the shear power spectrum, performingan E/B mode decomposition for
each statistic. We show that we are not limited by systematicerrors and use our results to
place joint constraints on the matter density parameterΩm and the amplitude of the matter
power spectrumσ8. We findσ8(Ωm/0.3)0.65 = 0.68± 0.12 where the1σ error includes both
our uncertainty on the median redshift of the survey and sampling variance.

Removing image and point spread function (PSF) distortionsare crucial to all weak lens-
ing analyses. We therefore include a thorough discussion onthe degree of ACS PSF distortion
and anisotropy which we characterise directly from GEMS data. Consecutively imaged over
20 days, GEMS data also allows us to investigate PSF instability over time. We find that, even
in the relatively short GEMS observing period, the ACS PSF ellipticity varies at the level of
a few percent which we account for with a semi-time dependentPSF model. Our correction
for the temporal and spatial variability of the PSF is shown to be successful through a series
of diagnostic tests.

Key words: cosmology: observations - gravitational lensing - large-scale structure.

1 INTRODUCTION

Weak gravitational lensing is a unique probe of the dark mat-
ter distribution at redshiftsz < 1 where, within the cur-
rently favouredΛCDM cosmological paradigm, dark energy be-
gins to play an important role in the evolution and growth of
the power spectrum of matter fluctuations. It therefore not only
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has the power to constrain fundamental cosmological parameters
such as the matter density parameterΩm and the amplitude of
the matter power spectrumσ8 (Maoli et al. 2001; Rhodes et al.
2001; Van Waerbeke et al. 2001; Hoekstra et al. 2002; Bacon etal.
2003; Jarvis et al. 2003; Brown et al. 2003; Hamana et al. 2003;
Massey et al. 2004; Rhodes et al. 2004; Van Waerbeke et al. 2004),
but also has the potential to test and constrain quintessence mod-
els parameterised by the equation of state of the dark energyw(z)
(Refregier et al. 2004). Cosmological parameter constraints from
weak lensing analysis are fully complimentary to those fromcos-
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mic microwave background (CMB) experiments as parameter de-
generacies are almost orthogonal in many cases (Brown et al.2003;
Contaldi et al. 2003; Tereno et al. 2004). Alone, measurements of
the CMB anisotropy atz ∼ 1000 are unable to constrainw(z) but
combined with future wide-field weak lensing surveys, potentially
focused on selected galaxy clusters (Jain & Taylor 2003), the goal
of determiningw(z) will certainly become attainable.

Lensing by large-scale structure distorts images of back-
ground galaxies, inducing weak correlations in the observed ellip-
ticties of galaxies, termed ‘cosmic shear’. The amplitude and an-
gular dependence of these correlations are related to the non-linear
matter power spectrumPδ(ℓ) and the geometry of the Universe.
If we first assume that the minute weak lensing shear distortions
can be measured in the absence of any systematic errors, arising
for example from telescope and detector based distortions,the er-
ror on any weak lensing analysis then has four main sources: shot
noise from the intrinsic ellipticity distribution of galaxies, sam-
pling (cosmic) variance, uncertainty in the galaxy redshift distri-
bution and uncertainty in intrinsic correlations that may exist be-
tween nearby galaxy pairs. Shot noise can be minimised by survey-
ing large areas of sky and/or by increasing the number density of
resolved galaxies in the weak lensing analysis. Sampling variance
can be minimised by imaging many different lines of sight. With
spectroscopic or photometric redshift information the galaxy red-
shift distribution can be accurately estimated (Brown et al. 2003;
Van Waerbeke et al. 2004). Redshift information also allowsfor
the removal of intrinsic correlations (King & Schneider 2002;
Heymans & Heavens 2003; Heymans et al. 2004). This effect has
however been shown to be a small contaminant to the weak lensing
signal measured from deep surveys (median redshiftzm ∼ 1.0), at
the level of less than a few percent of the shear correlation signal
(Heymans et al. 2004). The next generation of weak lensing sur-
veys aim to obtain precision results, minimising these sources of
error by surveying of the order of a hundred square degrees with ac-
companying photometric redshift information. These ground-based
surveys are however subject to atmospheric seeing which erases the
weak lensing shear information from all galaxies smaller than the
size of the seeing disk. This, in effect, limits the maximum depth of
ground-based weak lensing surveys and hence the sensitivity, lead-
ing to proposals for future deep wide-field space-based observa-
tions (Rhodes et al. 2004). With space-based data the numberden-
sity of resolved galaxies, in comparison to ground-based studies,
is multiplied two-fold and more. Resolving images of more dis-
tant galaxies will permit high resolution maps of the dark matter
distribution (Massey et al. 2004) and will yield significantly higher
signal-to-noise constraints on cosmological parameters in compar-
ison to constraints obtained from the same survey area of a seeing
limited ground-based survey (Brown et al. in prep).

With the installation of the Advanced Camera for Surveys
(ACS) on the Hubble Space Telescope (HST), relatively wide-field
space-based weak lensing studies are feasible and in this paper
we present the detection of weak gravitational lensing by large-
scale structure in GEMS; the Galaxy Evolution from Morphology
and Spectral energy distributions survey (see Rix et al. 2004 for an
overview). Spanning795 square arcmin, GEMS is currently the
largest space-based colour mosaic. With a high number density of
resolved sources and spectroscopic and/or photometric redshifts for
∼ 8000 of our sources from the COMBO-17 survey (Wolf et al.
2004) and the VVDS (Le Fèvre et al. 2004), we can beat down shot
noise and obtain a good estimate of the galaxy redshift distribution.

The error sources discussed above have not included system-
atic errors, but in reality for all weak lensing surveys the accuracy

of any analysis depends critically on the correction for instrumen-
tal distortions, which are several magnitudes larger than the un-
derlying gravitational shear distortions that we wish to detect. The
strongest distortion results from a convolution of the image with
the point spread function (PSF) of the telescope and camera.For
the detection of cosmic shear at the level of only a few percent, the
PSF distortion needs to be understood and controlled to an accu-
racy of better than one percent. For space-based weak lensing stud-
ies (Hoekstra et al. 1998; Rhodes et al. 2000, 2001; Refregier et al.
2002; Hämmerle et al. 2002; Casertano et al. 2003; Rhodes etal.
2004; Miralles et al. 2003), the limited number of stars in each
camera field of view provides insufficient coverage to map thePSF
anisotropy. This has made it necessary to assume long-term PSF
stability, often using PSF models derived from archived images of
globular clusters or from Tiny Tim (Krist 2000) thereby critically
limiting the accuracy of the correction for PSF distortions. In con-
trast to previous space-based lensing studies we are not forced to
assume long-term PSF stability as the GEMS PSF can be charac-
terised directly from the wide-area data where all but threeout of
the sixty-three ACS images were observed in the space of 20 days.
Hence we need only assume short term PSF stability, which we test
in Section 4.1. A detailed investigation into the GEMS ACS PSF
will be presented in Jahnke et al. (in prep) with a view to many
different astronomical applications.

This paper is organised as follows. In Section 2 we summarise
the basic theory that underpins cosmic shear studies and review
the particulars of our analysis. We discuss, in Section 3, the ob-
servations and data reduction, paying specific attention topotential
sources of image distortions. We focus on characterising and cor-
recting for the temporally and spatially varying dominant PSF dis-
tortion in Section 4 and compare, in Section 5, galaxy shear mea-
sured from the two GEMS passbands; F606W and F850LP. In Sec-
tion 6 we estimate the redshift distribution of the GEMS survey
from COMBO-17 and VVDS redshift catalogues. Our statistical
analysis is detailed in Section 7 where we measure the shear cor-
relation function, the top-hat shear variance statistic and the shear
power spectrum performing many diagnostic tests for systematic
errors. These results are used to place joint constraints onΩm and
σ8 in Section 8. We conclude in Section 9 with a comparison to re-
sults from other space-based and ground-based cosmic shearanal-
yses.

2 METHOD

The theory of weak gravitational lensing by large structure, detailed
in Bartelmann & Schneider (2001), directly relates the non-linear
matter power spectrumPδ to the observable weak lensing (com-
plex) shear fieldγ = γ1 + iγ2 characterised through the shear
(convergence) power spectrumPκ,

Pκ(ℓ) =
9H4

0Ω2
m

4c4

∫ wH

0

dw
g2(w)

a2(w)
Pδ

(

ℓ

fK(w)
, w

)

, (1)

wherew is the comoving radial distance,a(w) is the dimension-
less scale factor,H0 is the Hubble parameter,Ωm the matter den-
sity parameter andg(w) is a weighting function locating the lensed
sources,

g(w) =

∫ wH

w

dw′ φ(w′)
fK(w′ − w)

fK(w′)
, (2)

whereφ(w(z))dw is the observed number of galaxies indw and
wH is the horizon distance (Schneider et al. 1998). Note in thispa-
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per we will assume a flat Universe with zero curvature where the
comoving angular diameter distancefK(w) = w.

In this paper we measure directly the shear power spectrum
Pκ, the shear correlation function〈γ(θ)γ(θ+∆θ)〉 which we split
into a tangential component

〈γtγt〉θ =
1

4π

∫

dℓ ℓ Pκ(ℓ) [J0(ℓθ) + J4(ℓθ)], (3)

and a radial component

〈γrγr〉θ =
1

4π

∫

dℓ ℓPκ(ℓ) [J0(ℓθ) − J4(ℓθ)], (4)

and the top-hat shear variance〈|γ|2〉θ measured in a circle of an-
gular radiusθ

〈γ2〉θ =
1

2πθ2

∫

dℓ

ℓ
Pκ(ℓ) [J1(ℓθ)]

2 . (5)

NoteJi is theith order Bessel function of the first kind.
In order to exploit the straightforward physics of weak lens-

ing, one requires an estimate of the gravitational shear experienced
by each galaxy. Kaiser et al. (1995), Luppino & Kaiser (1997)and
Hoekstra et al. (1998) (KSB+) prescribe a method to invert the ef-
fects of the PSF smearing and shearing, recovering an unbiased
shear estimator uncontaminated by the systematic distortion of
the PSF. Objects are parameterised according to their weighted
quadrupole moments

Qij =

∫

d2θ W (θ) I(θ) θiθj
∫

d2θ W (θ) I(θ)
, (6)

whereI is the surface brightness of the object,θ is the angular dis-
tance from the object centre andW is a Gaussian weight function
of scale lengthrg, whererg is some measurement of galaxy size,
for example the half light radius. For a perfect ellipse, theweighted
quadrupole moments are related to the weighted ellipticityparam-
etersεα by
(

ε1

ε2

)

=
1

Q11 + Q22

(

Q11 − Q22

2Q12

)

. (7)

Kaiser et al. (1995) show that if the PSF distortion can be described
as a small but highly anisotropic distortion convolved witha large
circularly symmetric Gaussian, then the ellipticity of a PSF cor-
rected galaxy is given by

εcor
α = εobs

α − P sm
αβ pβ, (8)

wherep is a vector that measures the PSF anisotropy, andP sm

is the smear polarisability tensor given in Hoekstra et al. (1998).
p(θ) can be estimated from images of stellar objects at positionθ

by noting that a star, denoted throughout this paper with∗, imaged
in the absence of PSF distortions has zero ellipticity:ε∗ cor

α = 0.
Hence,

pµ = (P sm∗)
−1

µα ε∗obs
α . (9)

For space-based imaging, where PSFs deviate strongly from a
Gaussian, this PSF correction is mathematically poorly defined
(Kaiser 2000) such that it is important to calculate the PSF correc-
tion vectorp not only as a function of galaxy positionθ, but also
as a function of galaxy sizerg (Hoekstra et al. 1998). This rather
unsatisfactory situation has prompted the development of alterna-
tive methods (Rhodes et al. 2000; Kaiser 2000; Bernstein & Jarvis
2002; Refregier & Bacon 2003; Massey & Refregier 2004) but for
the purpose of this paper we will focus on the most commonly used

KSB+ technique, deferring our analysis with different techniques to
a future paper.

The isotropic effect of the PSF is to convolve galaxy images
with a circular kernel. This makes objects appear rounder, erasing
shear information for galaxies smaller than the kernel size, which
have to be removed from the galaxy shear sample. For the larger
galaxies, this resolution effect can be accounted for by applying the
pre-seeing shear polarisability tensor correctionP γ , as proposed by
Luppino & Kaiser (1997), such that

εcor
α = εs

α + P γ

αβγβ. (10)

whereεs is the true source ellipticity andγ is the pre-seeing gravi-
tational shear. Luppino & Kaiser (1997) show that

P γ

αβ = P sh
αβ − P sm

αµ (P sm∗)
−1

µδ P sh∗
δβ , (11)

whereP sh is the shear polarisability tensor given in Hoekstra et al.
(1998) andP sm∗ andP sh∗ are the stellar smear and shear polaris-
ability tensors respectively. This relation is only strictly true when
all values are measured from the PSF de-convolved image which
is difficult to create in practice.P γ is therefore calculated from the
PSF distorted images which produces very noisy measurements.

Combining the PSF correction, equation (8), and theP γ see-
ing correction, the final KSB+ shear estimatorγ̂ is given by

γ̂α = (P γ)−1

αβ

[

εobs
β − P sm

βµ pµ

]

. (12)

When averaging over many galaxies, assuming a random distribu-
tion of intrinsic galaxy ellipticities,〈εs〉 = 0, and hence〈γ̂〉 = γ,
providing a good estimate for the gravitational shear.

3 THE GEMS DATA

The GEMS survey (Rix et al. 2004) spans an area of∼ 28′ × 28′

centred on the Chandra Deep Field South (CDFS), combining 125
orbits of ACS/HST time with supplementary data from the GOODS
project (Giavalisco et al. 2004). 78 ACS tiles have been imaged in
F606W and 77 ACS tiles in F850LP, where the point source5σ
detection limits reachm606 = 28.3 andm850 = 27.1. In this sec-
tion we review the data set, discuss the potential for bias within the
source catalogues and highlight possible sources of image distor-
tion, in addition to the strong anisotropic PSF distortion which is
characterised and corrected for in Section 4. A detailed account of
the full GEMS data reduction method will be presented by Cald-
well et al. (in prep).

The ACS wide-field camera has a field-of-view∼ 3.4 × 3.4
arcmin comprising two4096 × 2048 CCD chips of pixel scale
0.05 arcsec (Ford et al. 2003). GEMS observes, in sequence, three
separate exposures per ACS tile dithered by∼ 3 arcsec, where
the observation strategy has been designed in such a way so asto
bridge the inter-chip gap and provide sub-pixel oversampling of
pixel scale0.03 arcsec in the final co-added image (∼ 7000×7000
pixels). GOODS have employed a different observing strategy, us-
ing only two separate dithered exposures. In order to optimise the
survey for Supernova searches (Riess et al. 2004) the GOODS area
is re-imaged in 5 different epochs, but to obtain similar depths
to the GEMS data and minimise the effects of PSF time varia-
tion, we co-add only the exposures from the first epoch of ob-
servations. This however leaves us with a slightly shallower cen-
tral region in the F606W GEMS mosaic which can be seen from
the median magnitude of each data set;m606(GEMS) = 25.6,
m606(GOODS) = 25.1. We note that the 2 exposure GOODS
dithering pattern will result in a poorer cosmic ray rejection in the
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GOODS area of the GEMS mosaic, and will impact somewhat on
the PSF.

Images from the ACS suffer from strong geometric distortions
as a result of the off-axis location of the camera within HST.In ad-
dition, the HST optical assembly and the ACS mirrors also induce
distortions. Meurer et al. (2003) accurately calibrate andmodel this
distortion from dithered images of star clusters. With thismodel all
tiles are drizzled onto a celestial pixel grid using a version of the
multidrizzle software (Koekemoer et al. 2003), where the astrom-
etry of each GEMS tile is tied to the overall catalogue from the
ground-based COMBO-17R band image (Wolf et al. 2004). Av-
eraging our final PSF corrected shear catalogues as a function of
ACS chip position, we find no evidence for any residual geometric
distortions remaining in our final multi-drizzled images.

A second order geometric distortion arises from the effect of
velocity aberration (Cox & Gilliland 2002). The HST guides on
nearby stars peripheral to the ACS field of view, making smallcor-
rections to keep the primary target on a fixed pixel. It cannothow-
ever correct for the isotropic plate-scale breathing whichis of the
order∼ 0.001% over an orbit. These small changes in pixel scale
are allowed for and corrected by our version of multidrizzle, pro-
vided the individual exposures are on the same scale. Variation of
scale during each observation would result in a slight blurring of
the co-added images that increases radially from the centre. GEMS
ACS tiles, observed over 1/7 of the orbit, suffer from pixel scale
variation that is, at maximum, a difference of0.004 arcsec corner
to corner. Our results later show no significant variation inaver-
age galaxy shear as a function of chip position and we hence con-
clude that this effect is not significant within our measurement ac-
curacy. In future data reductions of GEMS we will include a veloc-
ity aberration correction to the pixel scale using an updated version
of multi-drizzle.

We use theSExtractorsoftware (Bertin & Arnouts 1996) to
detect sources on both the F606W and F850LP imaging data, with
the two-step approach described in Rix et al. (2004). In short, this
method of combining twoSExtractorcatalogues, one measured
with high signal-to-noise detection thresholding, and onemeasured
with low signal-to-noise detection thresholding, allows us to find
the best compromise between detecting faint galaxies without de-
blending bright nearby galaxies into many different components.
We also useSExtractorto determine the weak variation of the sky
background across the tile, which is then subtracted for thefollow-
ing KSB+ analysis. We define galaxy sizerg as the half light radius
measured bySExtractor(flux radius)1 and calculate weighted
ellipticity parametersεi and the shear and smear polarisability ten-
sors;P sh andP sm for each object in theSExtractorcatalogue.

The accuracy of the centroid determined bySExtractor
is directly linked to the accuracy of each KSB+ galaxy shear
measurement. In the presence of non-isotropic centroidinger-

1 SExtractor analysis of image simulations have shown that the
flux radius does not accurately measure the true half-light radius
(Häußler in prep.). A good relationship betweenflux radius and the
input half light radius is seen but this relationship differs between disk and
bulge dominated galaxies. The value that we choose forrg does not change
the results as the finalP γ correction, equation (11), includes a correction
for the rg Gaussian weighting. The choice ofrg does however affect the
noise on each measurement and so we chooserg = f×flux radius
wheref is chosen to minimise the noise in the measured galaxy ellipticities.
We findf = 1. Note that alternative ways of definingrg usingSExtractor
ellipticity measures (see for example Rhodes et al. 2000) have been found
to yield slightly noisier results with the GEMS data.

rors there is also the potential for centroid bias (Kaiser 2000;
Bernstein & Jarvis 2002) which can arise if, for example, the
errors in thex direction exceed those in they direction producing
a tendency to bias towards an average galaxy shear in thex
direction. The GEMS galaxies have been modelled using the two-
dimensional galaxy profile model fitting codeGALFIT (Peng et al.
2002) which finds the best fit PSF convolved Sérsic profiles to
each galaxy, allowing the centroid to be a free parameter in the fit
(see Barden et al. 2004 and Häußler et al. in prep for details). We
can therefore test if we are subject to centroid bias by comparing
GALFIT and SExtractor centroids. The average pixel offset is
consistent with zero in thex direction, ∆x = −0.001 ± 0.02
and very close to zero in they direction ∆y = 0.03 ± 0.02.
Calculating the ellipticity of a mock circular Gaussian galaxy
N = 104 times, assuming Gaussian distributed centroid errors
with mean and width as estimated byGALFIT, we find that for our
smallest galaxies, centroid errors induce a systematic centroid bias
[

e1 = (−2.754 ± 0.001) × 10−4, e2 = (−7.14 ± 0.02) × 10−6
]

,
which is negligible compared to our current measurement accuracy.
For larger galaxies centroid bias decreases. Note that the GEMS
GALFIT galaxy profile parameters cannot currently be used for
weak lensing studies as the PSF has been derived from co-added
stellar images and therefore does not allow for the anisotropic
variation of the distortion. With an anisotropic PSF modelGALFIT
could be used for measuring galaxy shear, although this would be
a time consuming process.

When compiling source catalogues one should consider selec-
tion bias where any preference to select galaxies oriented in the
same direction as the PSF (Kaiser 2000) and galaxies that areanti-
correlated with the gravitational shear (and as a result appear more
circular) (Hirata & Seljak 2003), would bias the mean ellipticity of
the population. Through simulations of artificial disc galaxy light
profiles, convolved with the ACS PSF (see Häußler et al. in prep
for details), we see no significant selection bias when we intro-
duce aSNR > 15 selection criteria (defining SNR =flux /
flux error), i.e within the noise of the sample, there is neither
a preference for selecting faint galaxies oriented with thePSF, nor
a preference for selecting more circular faint objects.

To remove erroneous detections along the chip boundaries,
diffraction spikes from stars, satellite trails and reflection ghosts,
each image catalogue is masked by hand using the method de-
scribed in MacDonald et al. (2004). Using weight maps to define
the best regions in each tile, we combine the masked catalogues
from each ACS tile ensuring that in the overlapping regions of
neighbouring tiles, only the data from the best tile is included.
Note that the objects in overlapping regions are used for consis-
tency checks to test the accuracy of the galaxy shear measurement.

The charge transfer efficiency (CTE) of space-based instru-
ments provides another source of image distortion. Objectswith
low signal-to-noise in low sky background images tend to bleed
in the readout direction of the CCD camera, causing an elonga-
tion of the objects that is correlated with the readout direction and
the distance from the read-out amplifier. Over time the CTE de-
grades increasing the magnitude of this effect (Miralles etal. 2003;
Rhodes et al. 2004). The readout-amplifiers for the ACS lie ateach
corner of the camera, with the readout direction along they axis of
the CCD and we find no correlation between the average PSF cor-
rected galaxy shear along they axis, and the galaxy distance from
the readout-amplifiers. Hence, even though the charge transfer ef-
ficiency of the ACS wide-field camera has been shown to degrade
with time (Riess 2002), we find no signature for CTE in our data,



Weak lensing with GEMS 5

potentially a result of the data being observed relatively soon after
the ACS installation.

4 CHARACTERISATION OF, AND CORRECTION FOR,
THE ANISOTROPIC ACS PSF

In this section we give a thorough account of the techniques which
we have used to characterise and correct for the anisotropicACS
PSF. To date there has not been such a large set of HST data im-
aged in a short time frame which can allow for a rigorous semi-time
dependent PSF analysis. The PSF is characterised through images
of non-saturated stellar objects that are selected throughtheir lo-
cus in the size-magnitude plane. Stars can be easily identified, ex-
tending from bright magnitudes to faint magnitudes into themain
distribution of galaxies, remaining at one characteristicsize. We
use both the full width half maximum (FWHM) and the half light
radius (flux radius) measured bySExtractoras a definition
of size to select the stellar objects, where stellar candidates must
lie along the stellar locus in both theFWHM-magnitude plane and
theflux radius-magnitude plane. This method selects∼ 1300
stellar objects in the F850LP images and∼ 900 stellar objects
in the F606W images. Note that the loss of stellar objects in the
F606W arises from the increased number of saturated stars and the
use of more conservative cuts at fainter magnitudes to avoidconfu-
sion with small faint galaxies.

For each star we measure the weighted stellar ellipticity pa-
rametersε∗α and the stellar smear polarisability tensorP sm∗ using
Gaussian weightsW (rg) with different smoothing scales;rg rang-
ing from 1.9 pixels, the minimum stellar size measured bySEx-
tractor, to 10 pixels. We limit the maximum smoothing scale to
avoid excessive inclusion of light from neighbouring objects which
quickly introduces noise into the stellar shape measurement. Fig-
ure 1 shows the variation in the stellar ellipticity parameters ε∗µ
across the ACS field of view, measured using all the GEMS F606W
data, (upper panels) and all the GEMS F850LP data (lower pan-
els). The horizontal spacing aty ∼ 3200 pixels results from the
chip boundaries where shape estimates become unreliable. For Fig-
ure 1,ε∗α has been measured using two differently scaled weight
functionsW (rg), the first looking at the core PSF distortion with
rg = 2.5 pixels (left panels), and the second looking at the PSF
distortion averaged over the main extent of the star, withrg = 7
pixels (right panels). This figure shows that the PSF distortion is
clearly anisotropic and varies with scale size, and with filter. The
F850LP PSF has a strong horizontal diffraction spike, whichdom-
inates the average PSF distortion on large scales isotropically. This
diffraction spike may therefore account for the claim by Park et al.
(2004) that the ACS PSF is fairly isotropic.

In order to accurately characterise the anisotropy of the PSF
across the field of view of each ACS tile in the survey we wish
to maximise the surface density of stellar objects as a function of
(x, y) position. This however necessitates some assumptions about
the PSF stability over time as the stellar number density corre-
sponds to only∼ 16 stars per ACS tile in F850LP and∼ 11 stars
per ACS tile in F606W. Figure 1 shows smooth variation in the
PSF as a function of chip position indicating that any variation of
the PSF in the 20 day duration of the GEMS observations is small.
We split our stellar sample into stars imaged by GEMS and stars
imaged by GOODS, as each data set derives from co-added expo-
sures with different dithering patterns which impact on thePSF.
The first epoch of GOODS observations spanned 5 days, and all
but 3/63 GEMS tiles were observed in the space of 20 days. We

Figure 1. The anisotropic ACS PSF measured from stellar sources in
F606W images (upper panels) and F850LP images (lower panels). The stel-
lar ellipticity ε∗ plotted has been measured using two differently scaled
weight functionsW (rg); left panelsrg = 2.5 pixels (PSF core distortion),
right panelsrg = 7 pixels (PSF wing distortion). The 5% bar in the upper
left corner of each panel shows the scale, which is the same for each panel.

reject from our analysis the 3 GEMS tiles which were taken out
of sequence and split our GEMS sample into 2 data sets assuming
PSF stability on the scale of 10 days. We will quantify the validity
of this assumption in Section 4.1.

To model the anisotropy of the PSF across the field of view,
we fit a two-dimensional second order polynomial to the PSF cor-
rection vectorp equation (9), modelling each CCD chip and data
set separately. Before fitting we remove outliers with a3σ devia-
tion from p̄µ, and then iterate twice during the fit, removing out-
liers with a 3σ deviation in their PSF corrected ellipticity from
ε̄cor∗

µ . Figure 2 shows the variation in the measured PSF correc-
tion vector p across the ACS field of view, measured using all
the GEMS F606W data (upper left). Thep values calculated from
our semi-time-dependent polynomial models (upper right),the cor-
rected stellar ellipticitiesεcor∗

µ (lower left, note thatp and ε are
plotted on different scales), and the ellipticity distribution of stars
before and after the PSF correction (lower right) are also shown.
For this figure we have used a smoothing scale ofrg = 5.9 pixels,
which is the median galaxy size in our catalogue. In this casewe
find the mean stellar ellipticity before and after correction to be

ε̄∗1 = 0.0475 ± 0.015 ε̄∗2 = 0.0157 ± 0.014 (before),

ε̄∗1 = 0.0003 ± 0.0007 ε̄∗2 = −0.0001 ± 0.0007 (after). (13)

This demonstrates that the PSF correction significantly reduces the
mean stellar ellipticity such that it is consistent with zero, and that
the dispersion also decreases by a factor∼ 2. Note that the success
of this correction does lessen somewhat with increasingrg, as the
noise in the measurement ofp grows, but as the number of galax-
ies to which these highrg corrections apply decreases in turn, this
effect is not problematic.
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Figure 2. The upper left panel shows the variation in the measured PSF
correction vectorp across the ACS field of view, measured using all the
GEMS F606W data. This data is modelled with a semi-time dependent two-
dimensional second order polynomial shown in the upper right panel. The
PSF corrected stellar ellipticitiesεcor∗

µ , lower left panel, display random
orientation. The 5% bar in the upper left corner shows the scale. Note that
p andε are not directly equivalent and are thus plotted on different scales.
The ellipticity distribution of stars before (circles) andafter (dots) PSF cor-
rection are also shown (lower right).

With the PSF models we correct our galaxy catalogue for PSF
distortions using equation (8). To test for residual PSF related sys-
tematic distortions we search for correlations between PSFcor-
rected galaxy ellipticityεcor

i and stellar ellipticityε∗i . Our first sim-
ple test splits the survey into square cells of side 20 arcseconds
in the ACS (x, y) plane, calculating the cell averaged PSF cor-
rected galaxy ellipticity〈εcor

i 〉 and the cell averaged uncorrected
stellar ellipticity 〈ε∗i 〉 determined atrg = 5.9, the median galaxy
size in the survey. Figure 3 (lower panel) shows the resulting mean
Σ〈εcor

i 〉/Ncells as a function of cell stellar ellipticity〈ε∗i 〉, where
for comparison we also show the average ellipticity of galaxies,
which have not been PSF corrected, as a function of stellar ellip-
ticity (upper panel). The correlation found with the uncorrected
galaxy catalogue is not seen in the PSF corrected galaxy elliptic-
ities, indicating the success of the PSF correction. This promising
result will be tested more rigorously in Section 7.2.

4.1 The temporal stability of the PSF

PSF time variation in space-based instruments is known to result
from telescope ‘breathing’, as the HST goes into and out of sun-
light in its 90 minute orbit, and from a slow change in focus which
is periodically corrected for (Rhodes et al. 2000). Variation in the
PSF as measured from reduced images can also be caused by slight
differences in the data reduction method but the consistentGEMS
observation and reduction strategy minimises this effect.With our
large set of HST data we are able to test the stability of the ACS PSF
by looking for changes in the average stellar ellipticity asa func-

Figure 3. The upper panel shows the correlation between the mean ob-
served galaxy ellipticity〈εobs

i 〉 averaged in square cells of side 20 arcsec-
onds, and the cell stellar ellipticity〈ε∗i 〉 measured withrg = 5.9 pixels.
Correction for the anisotropic PSF removes this correlation which can be
seen in the lower panel where the mean PSF corrected galaxy ellipticity
〈εcor

i 〉 is shown as a function of stellar ellipticity. Note that the upper and
lower panels are plotted on different scales.

tion of time and time dependent changes in the anisotropy of the
PSF distortion. Figure 4 shows the variation in the average F606W
and F850LP stellar ellipticity parameters as a function of observa-
tion date2 where for each ACS image the F850LP and F606W data
were taken in succession. This figure reveals a clear trend inboth
filters withε∗1 (circles) increasing andε∗2 (squares) decreasing by a
few percent during the observation period, a variation thatis of the
order of the signal we wish to detect. This measurement of ACS
PSF temporal instability is in agreement with Jee et al. (2004) who
show that their PSF can only be characterised from archived stellar
cluster images when a small ellipticity adjustment is applied. It is
however in contrast to the often applied assumption of long-term
HST PSF stability.

The reason for the temporal variation of the ACS PSF is not
fully understood. Figure 4 shows that the F606W PSF becomes
more circular(|ε| → 0) in time, in contrast to the F850LP PSF
which becomes more elliptical. This could potentially be explained
by a slow de-focus if one also considers the poorly understood
strong horizontal diffraction spike seen in the F850LP PSF.It is
unlikely that this spike is caused by the ACS optics and it will there-
fore remain unaffected by any de-focus. A de-focus will circularise
the images, as seen from the F606W data, and lower the contrast
between the PSF core and diffraction spike in the F850LP data,
increasing the F850LPε∗1 component.

Figure 2 shows that our semi-time-dependent PSF correction
reduces the average stellar ellipticity to zero and this generally
holds when we measure the PSF corrected stellar ellipticityas a

2 Our consistent GEMS reduction strategy minimises the chances that the
PSF variation we see results from data manipulation but the reader should
note that the observation strategy of GEMS does correlate observation date
and declination.
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Figure 4. The stellar ellipticity parametersε∗1 (circles) andε∗2 (squares) av-
eraged across the full ACS field of view as a function of observation date.
The stellar ellipticity averaged over the whole data set is plotted as an iso-
lated point on the far left of the plot. The upper panel shows the variation
measured from F606W data and the lower panel shows the variation mea-
sured from F850LP showing that both filters follow the same trends in the
ε∗1 andε∗2 components. The errors plotted are the errors on the mean stel-
lar ellipticity. For this figure we have used a smoothing scale of rg = 5.9
pixels to calculate the stellar ellipticities, but we see PSF variation over the
full range of smoothing scales that we use in this analysis.

function of observation date, as shown in Figure 5 . There arehow-
ever notable exceptions, for example ACS images taken on thethird
and sixth observation days, showing that the semi-time-dependent
modelling is only a partial solution for time varying PSF modelling.

To investigate the effect on the anisotropy of the PSF Figure6
compares the difference between the stellar ellipticity predicted by
the PSF models calculated for the two GEMS data sets (days 1-10
and days 11-20). To convert∆p into a difference in stellar ellip-
ticity we multiply by the average stellar smear polarisability P sm∗

following equation (8). This comparison reveals variationin the
anisotropy of the PSF at the level of, at maximum,∆ε∗ ∼ 5%. We
hence conclude that the PSF time variation is not a simple change
in average ellipticity but also an instability in the PSF anisotropy
across the field of view.

Creating PSF models for each ACS tile based on at maximum
a few tens of stellar objects will yield systematic errors larger than

Figure 5. The F606W corrected stellar ellipticity parametersεcor∗
1 (circles)

andεcor∗
2 (squares) averaged across the full ACS field of view as a function

of observation date. The corrected stellar ellipticity averages to zero over
the whole data set as shown by the isolated points on the far left of the plot.
In general the PSF correction works well reducing the corrected ellipticity
as a function of observation date close to zero, and significantly reducing the
scatter (i.e removing the anisotropy) seen in Figure 4 (plotted on a different
scale). There is however the occasional case where the stellar ellipticity
is significantly different from zero showing that the semi-time-dependent
modelling is only a partial solution for time varying PSF modelling. The
errors plotted are the errors on the mean corrected stellar ellipticity.

Figure 6. The difference between stellar ellipticity calculated from PSF
models for each of the two GEMS data sets withrg = 5.9 pixels. This
shows that PSF variation is not a simple change in average ellipticity but
also an instability in the PSF anisotropy across the field of view, varying at
the maximum level of∆ε∗ = 5%.

the variation in the mean corrected stellar ellipticity that we see
in Figure 5. Thus, the short-term PSF variation cannot be simply
modelled with the method that we have used. The time dependent
variation of the PSF whilst significant is at a low level and wethere-
fore proceed with our semi-time dependent PSF model noting that
short term variation in the PSF may well contribute to systematic
errors (see Section 7.5).
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4.2 Isotropic correction

The application of the anisotropic PSF correction to observed
galaxy ellipticities, through equation (8), leaves an effectively
isotropic distortion. This distortion makes objects rounder as a re-
sult of both the PSF and the Gaussian weight function used to mea-
sure the galaxy shapes, affecting smaller galaxies more strongly
than the larger galaxies. To correct for this effect and convert
weighted galaxy ellipticitiesε into unbiased shear estimatorsγ̂,
we use the pre-seeing shear polarisability tensorP γ , equation
(11). P γ is calculated for each galaxy from the measured galaxy
smear and shear polarisability tensors,P sm andP sh, and a term
that is dependent on stellar smear and shear polarisabilitytensors;
(P sm∗)−1

µδ P sh∗
δβ . As theP γ correction is isotropic we can calcu-

late this stellar term purely as a function of smoothing scale rg,
averaging over all the stellar objects that were used in the previous
anisotropic PSF modelling. Note that we calculate a different value
for each data set as the PSF variation we see may well be related
to camera focus which will effect theP γ correction as well as the
anisotropic PSF correction.P γ is a very noisy quantity, especially
for small galaxies, but as we expect there to be no differencein the
P γ correction for theγ1 andγ2 shear components, we can reduce
this noise somewhat by treatingP γ as a scalar equal to half its trace
(note that the off diagonal terms ofP γ are typically very small).

In an effort to reduce the noise onP γ still further, P γ is of-
ten fit as a function ofrg (Hoekstra et al. 1998; Bacon et al. 2003;
Brown et al. 2003; Massey et al. 2004). With space-based datathis
fitting method produces a bias asP γ is a strong function of galaxy
ellipticity where the dependence can be demonstrated by consid-
ering that in the case of a galaxy observed in the absence of PSF
smearing and shearing,P γ reduces toP γ = 2(1 − e2), where
e is the unweighted galaxy ellipticity.γ = ε/P γ is very sensi-
tive to small errors in a functional fit ofP γ(rg, ε) and we there-
fore do not use any form of fitting toP γ . Although this decreases
the signal-to-noise of the shear measurement, it avoids anyform of
shear calibration bias which would not be identified with an E/B
mode decomposition as discussed in Sections 7.2.2 and 7.4.

4.3 Catalogue selection criteria

For our final PSF corrected shear catalogue we select galaxies
with size rg > 2.4 pixels, galaxy shear|γ| < 1, magnitude
21 < m606 < 27, andSNR > 15. We remove galaxies from
the catalogue with neighbouring objects closer than20 pixels (0.6
arcsec) to reduce noise in the ellipticity measurement fromover-
lapping isophotes. These selection criteria yield 47373 galaxies in
the F606W images, a number density of∼ 60 galaxies per square
arcminute, and 23860 galaxies in the F850LP images and a num-
ber density of∼ 30 galaxies per square arcminute. Note∼ 15%
of our F606W sources have photometric redshift estimates from
COMBO-17. We find no significant correlations of the galaxy shear
with chip position, galaxy size, magnitude or SNR.

To analyse the full GEMS mosaic we rotate the shear mea-
surements from each ACS tile into a common reference frame by

(

γrot
1

γrot
2

)

=

(

cos 2φ sin 2φ
− sin 2φ cos 2φ

)(

γ1

γ2

)

, (14)

whereφ is defined to be the angle between thex axis of each ACS
tile and a line of constant declination.

Figure 7. Comparison of galaxy shearγi measured in both F606W and
F850LP GEMS imaging. The grey-scale shows the number density of ob-
jects which cluster at low shear values (black= 210 galaxies, white→ 0
galaxies). Over-plotted are the grey-scale contours whichfollow the 1:1 re-
lationship that we would wish to see between the two data sets.

5 COMPARISON OF F606W AND F850LP DATA

As the F850LP data is significantly shallower than the F606W data
we omit it from our cosmic shear analysis, but it is interesting to use
the galaxies detected in both F606W and F850LP as a consistency
check to test if our method is sensitive to the differences infilter
PSFs seen in Figure 1. Even though we expect galaxy morphology
to appear differently in the F606W and F850LP images, we expect
our shear estimates to remain consistent. Figure 7 shows thevery
good agreement between galaxy shear measured in the F606W and
F850LP images where the grey-scale shows the number densityof
objects. This comparison shows that our method of measuringshear
produces very consistent results for galaxies imaged with different
PSFs and different noise properties, showing no significantcalibra-
tion biases. In principle one should correct the galaxy ellipticity
based on galaxy colour because of the chromatic anisotropy of the
PSF, but this comparison also shows that the colour of the PSFdoes
not significantly impact on the shear measurement.

6 GEMS REDSHIFT DISTRIBUTION

To interpret a weak lensing signal we need to know the redshift
distribution of the lensed sources (see equation (2)). The deeper
the survey is, the stronger the signal we expect to measure. We
estimate the source redshift distribution of GEMS based on pho-
tometric redshifts from the CDFS COMBO-17 survey (Wolf et al.
2004) and spectroscopic redshifts from the CDFS VVDS survey
(Le Fèvre et al. 2004), by assuming that a magnitude dependent
redshift distribution can be parameterised as

n(z, mag) ∝ z2 exp

[

−
(

z

z0(mag)

)1.5
]

(15)

wherez0 is calculated from the median redshiftzm with z0 =
zm/1.412 (Baugh & Efstathiou 1994). We calculatezm(mag) for
each survey in magnitude bins of width 0.5 magnitude, out to the
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Figure 8. The median galaxy redshift as a function ofm606 magnitude
based on photometric redshifts from COMBO-17 (squares) andthe HDFN
(triangles), and spectroscopic redshifts from VVDS (circles). Median red-
shift errors include uncertainty in redshift completenesswhich dominates
the COMBO-17 and VVDS results at faint magnitudes, and statistical un-
certainty which dominates in the smaller galaxy samples at bright magni-
tudes. For the photometric redshifts we also include the average redshift er-
ror, added in quadrature. Magnitude errors show the uncertainty in the mean
m606 magnitude in each magnitude bin selected inIAB (VVDS), RVega

(COMBO-17) andm606 (HDFN). Over-plotted is the best linear fit to the
COMBO-17 and VVDS data. The HDFN data is shown at faint magnitudes
to justify our extrapolation to faint magnitudes of the COMBO-17/VVDS
linear fit.

limiting magnitude of each survey VVDS,IAB < 24; COMBO-17,
RVega < 24. These estimates are taken as lower limits for the true
median redshift, as both surveys suffer from redshift incomplete-
ness at faint magnitudes. To calculate upper limits for the true me-
dian redshift we follow Brown et al. (2003) assuming those galax-
ies without an assigned redshift are most likely to be at a higher
redshift. We place the percentage of galaxies without redshift mea-
surements atz = ∞ and recalculatezm(mag), taking our final me-
dian redshift estimate to be the midpoint between this upperlimit
and the measured lower limit. In the cases where the difference be-
tween our upper and lower limit constraints are larger than the er-
ror on the mean of the distributionσz/

√
N the uncertainty on the

median redshift is given by the upper and lower limits. For bright
magnitudes where the redshift measurements are fairly complete
and the number density of objects are relatively small, we place a
statistical uncertainty on the median redshift given byσz/

√
N . For

the COMBO-17 median redshift error we include the additional er-
ror on the photometric redshift estimate whereδz/(1 + z) ∼ 0.02
for RVega < 22 andδz/(1 + z) ∼ 0.05 for 22 < RVega < 24.

To convert thezm(mag) from the different surveys to
zm(m606) we match the COMBO-17 and VVDS sources to the
CDFS 5 epoch GOODSm606 catalogue (Giavalisco et al. 2004).
Note that matching the comparatively shallow redshift catalogues
with deep 5 epoch GOODS data ensures that we are not subject to
incompleteness in them606 data. We then calculate the meanm606

in eachIAB and RVega magnitude bin, assigning an uncertainty
in the m606 magnitude of each bin given byσ606/

√
N . Figure 8

shows the combined results from both surveys which are in very
good agreement, and the best linear fit;

zm = −3.132 + 0.164 m606 (21.8 < m606 < 24.4). (16)

To estimate the median redshift of our galaxy sample fainterthan
m606 = 24.4 we extrapolate the above relationship. This is justi-

fied by thezm : m606 relationship measured in the Hubble Deep
Field North (HDFN) (Lanzetta et al. 1996; Fernández-Soto et al.
1999) shown (triangles) in Figure 8, where the median redshift
error combines the photometric redshift errorδz/(1 + z) ∼ 0.1
(Fernández-Soto et al. 1999) and the statistical uncertainty in each
bin. Note that only them606 > 24 points are shown for clarity,
but there is also good agreement between COMBO-17, VVDS and
HDFN at brighter magnitudes

We estimate the redshift distribution for GEMSφ(z) through

φ(z) =

M
∑

i=1

N(i)n(z, m606(i))/

M
∑

i=1

N(i) (17)

where we bin the GEMS sources intoi = 1, M magnitude
slices of mean magnitudem606(i), where each bin containsN(i)
galaxies.n(z, m606(i)) is calculated through equation (15) with
z0(m606) = zm(m606)/1.412 as estimated from equation (16).
The calculatedφ(z) is very similar to a magnitude independent
n(z) equation (15), withzm = 1.0 and as such, for simplic-
ity when deriving the weak lensing theoretical models in thefol-
lowing analyses, we will use a magnitude independentn(z) with
zm = 1.0 ± 0.1, where the error given derives from the accuracy
of thezm(m606) fit, shown in Figure 8.

7 ANALYSIS: 2-POINT STATISTICS

In this section we use GEMS F606W data to measure the shear
correlation function, the shear variance statistic and theshear power
spectrum performing several diagnostic tests for systematic errors.
We also determine an additional sampling error in order to account
for the fact that GEMS images only one field.

7.1 Jackknife Method

In the analysis that follows we will often make use of the jackknife
statistical method (see for example Wall & Jenkins 2003) to ob-
tain correlation functions with a robust estimate of the covariance
matrix. The algorithm is quite simple, if a little time consuming.
We are interested in the two-point correlation function which we
first calculate from the whole survey and write as a data vector
C = C(θ1, θ2, ......). We then divide our sample intoN separate
sub-regions on the sky of approximately equal area and calculate
the correlation functionCl = Cl(θ1, θ2, ......), l = 1..N times
omitting one sub-region in each calculation. Note that for atradi-
tional jackknife we would perform the measurementN = Ngalaxy

times removing a single galaxy each time, but this is computation-
ally prohibited and providedN is larger than the number of angular
bins, this modified jackknife method is valid (Scranton et al. 2002).
Defining

C∗

l = NC − (N − 1)Cl , (18)

the jackknifed estimate of the correlation function,Ĉ, is then given
by the averagêC = 〈C∗

l 〉. The jackknife estimated statistical co-
variance of the correlation functionC(θi) in angular bini and the
correlation functionC(θj) in angular binj is given by

〈∆C(θi)∆C(θj)〉 =
1

N(N − 1)
×

l=N
∑

l=1

(

C∗

l (θi) − Ĉ(θi)
) (

C∗

l (θj) − Ĉ(θj)
)

. (19)
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Figure 9. Star-galaxy cross correlation functionsCsys
tt (circles) andCsys

rr

(crosses) compared to theoretical galaxy-galaxy shear correlation func-
tions 〈γrγr〉θ (upper curve) and〈γtγt〉θ (lower curve) withzm = 1.0,
Ωm = 0.3, andσ8 = 0.7. For comparison we also measure the star-
galaxy cross correlation in the absence of PSF corrections,shown dashed,
where for clarity we plot1

2
(Csys

tt + Csys
rr ).

7.2 Tests for PSF contamination

In this section we perform several diagnostic tests to determine
whether residual PSF-related correlations remain after the PSF cor-
rection of Section 4. Measuring the magnitude of PSF contamina-
tion as a function of angular scale enables us to determine which
angular scale shear correlations are free from sources of systematic
errors and are therefore useful for cosmological parameterestima-
tion.

7.2.1 Star-galaxy cross correlation

Bacon et al. (2003) show that residual PSF-related distortions add a
componentCsys

ij to the measured correlation function〈γiγj〉 where

Csys
ij =

〈γiε
∗
j 〉〈γjε

∗
i 〉

〈ε∗i ε∗j 〉
. (20)

This method to test for residual PSF contamination in the data is
similar to the cell averaged test described in Section 4 but in this
case we look for correlations as a function of angular scale,not
chip position, thereby revealing any PSF time variation effects that
remain after our semi-time-dependent PSF correction has been ap-
plied. We estimateCsys

ij and associated errors using the modified
jackknife method detailed in Section 7.1, withε∗i determined at
rg = 5.9, the median galaxy size in the survey. We useN = 25
sub-regions in the jackknife estimate ofM = 14 logarithmic an-
gular bins fromθ = 0.2 arcmin toθ = 25 arcmin. Figure 9 shows
the resulting star-galaxy cross correlation functionsCsys

tt andCsys
rr ,

compared to theoretical galaxy-galaxy shear correlation functions
with Ωm = 0.3, and σ8 = 0.75. We find that the star-galaxy
cross correlation is consistent with zero indicating that the mea-
surement of galaxy-galaxy shear correlations from the GEMSdata
will be free from major sources of systematics. For comparison we
also measure the star-galaxy cross correlation when we havenot
included a correction for the distorting PSF. This reveals acorre-
lation signal (shown dashed) that exceeds the weak cosmological
signal that we wish to measure, stressing the importance fora good
understanding of the PSF.

7.2.2 E/B mode decomposition of shear correlations

An alternative diagnostic to determine the level of systematic er-
rors is to decompose the shear correlation function into ‘E-modes’
and ‘B-modes’ (Crittenden et al. 2002). Weak gravitationallensing
produces gradient curl-free distortions (E-mode), and contributes
only to the curl distortions (B-mode) at small angular scales,θ < 1
arcmin, due to source redshift clustering (Schneider et al.2002). A
significant detection of a B-type signal in weak lensing surveys is
therefore an indication that ellipticity correlations exist either from
residual systematics within the data and/or from intrinsicgalaxy
alignments (see Heymans et al. (2004) for a discussion of thelat-
ter).

Defining the sum and difference of the tangential and radial
correlation functions,

ξ±(θ) = 〈γtγt〉θ ± 〈γrγr〉θ, (21)

Crittenden et al. (2002) show that the shear correlation functions
can be decomposed into the following E- and B-type correlators,

ξE(θ) =
ξ+(θ) + ξ′(θ)

2
ξB(θ) =

ξ+(θ) − ξ′(θ)

2
(22)

where

ξ′(θ) = ξ−(θ) + 4

∫

∞

θ

dϑ

ϑ
ξ−(ϑ) − 12θ2

∫

∞

θ

dϑ

ϑ3
ξ−(ϑ). (23)

Our data extends at maximum toθ = 28 arcmin necessitating
the use of a fiducial cosmological model to complete the integral.
This prevents cosmological parameter estimation directlyfrom the
E-modes, but as the variation in the sum of the model depen-
dent part of the integral is small∼ 10−5, this method is still a
valid diagnostic test for residual systematics within the data. Note
that the mass aperture statistic E/B decomposition (Schneider et al.
1998) does not suffer from this limitation as the integral over
the shear correlation function spans from0 → 2θ. This integral
range does however introduce its own problems (see Massey etal.
2004 for a discussion) and limits the analysis to small scalepower
(Van Waerbeke et al. 2004). We therefore choose to use the E and
B type correlators purely to test for B-type systematic errors within
our data, although see Van Waerbeke et al. (2004) for a methodthat
uses the mass aperture statistic to calibrateξE(θ) for cosmological
parameter estimation.

Following Pen et al. (2002) we define the2n element vector
ξi = (ξ+(θ), ξ−(θ)) which we compute from GEMS, binning the
data finely inton = 2000 intervals of0.9 arcsec (equivalent to a
separation of∼ 30 ACS pixels). The E/B correlators are then given
by a2n element vector

ξEB
i = (ξE(θi), ξ

B(θi)) = Tijξj (24)

whereT is a2n2 transformation matrix defined by equation (23).
To reduce noise we re-binξEB

i into M = 14 logarithmic intervals
from θ = 0.2 arcmin toθ = 25.0, represented by anM × 2n
projection operatorξbin

k = Pkiξ
EB
i .

To calculate errors onξbin
k we first calculate the covariance

matrix of the raw correlatorsLij = 〈∆ξi∆ξj〉 using the jackknife
method detailed in Section 7.1. We find, in contrast to Pen et al.
(2002), that our slightly wider correlation bins (∆θ = 0.9 arcsec
compared to∆θ = 0.6 arcsec) are correlated. Note that the modi-
fied jackknife method in principle requiresN > n sub-regions to
calculateLij , but as we re-binLij into M = 14 broader angu-
lar scales to estimate the final errors onξbin our jackknife method,
which is computationally time limited toN = 100, is still valid.
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Figure 10. E/B mode decomposition of the shear correlation function mea-
sured from the GEMS observations. The upper panel showsξbin

E
and the

fiducial ΛCDM theoreticalξE(θ) model whereσ8 = 0.7 and the me-
dian source redshiftzm = 1.0. The lower panel showsξbin

B
that is consis-

tent with zero on all angular scales and can be compared to thetheoretical
modelξE(θ) shown dotted. Using a different fiducialΛCDM cosmologi-
cal model to calculateξbin has a small effect (at the level of10−5) which
can be seen from the dotted curves where we have assumedσ8 = 0.6
(lower curve E-mode, upper curve B-mode) andσ8 = 1.0 (upper curve
E-mode, lower curve B-mode)

The binned covariance matrix of the E/B correlators is givenby
(Pen et al. 2002),

Lbin
lm = PliTijLjkTkoPom, (25)

where the errors onξbin
k are given by

√

Lbin
kk .

We investigate E- and B-mode correlations in the GEMS and
GOODS data separately with the measurement from the GEMS
data shown in Figure 10. For this E/B mode decomposition we have
used a fiducialΛCDM cosmological model to complete the inte-
gral of equation (23) withσ8 = 0.7 and with a median source
redshift for our galaxies ofzm = 1.0. Using a different fidu-
cial ΛCDM cosmological model has a small effect (at the level
of 10−5) which can be seen from the dotted curves in Figure 10
where we have assumedσ8 = 0.6 and σ8 = 1.0. We find that
the E-modes are in good agreement with the fiducial cosmological
model and that the B-modes for GEMS are consistent with zero on
all scalesθ > 0.2 arcmin. Whilst finding this result very encour-

aging we note that our B-modes measured at small angular scales
are very strongly correlated and noisy such that in the worse-case
scenario, represented by the upper end of the error bars shown, the
B-modes exceed the signal that we wish to measure. This motivates
our desicion to conservatively limit our shear correlationfunction
analysis to angular scalesθ > 0.65 arcmins within the GEMS data
where we can be confident that the signal we measure is cosmolog-
ical and not systematic.

The PSF model for the GOODS data is determined from ap-
proximately half the number of stars which were used to deter-
mine the two semi-time-dependent GEMS PSF models, as GOODS
spans approximately one quarter of the area of the GEMS observa-
tions. We would therefore expect to find a poorer PSF correction
with the GOODS data which is seen with the presence of non-zero
B-modes at angular scalesθ < 1 arcmin. We therefore only include
GOODS data in our shear correlation function analysis for angular
scalesθ > 1 arcmin.

7.3 The shear correlation function

Having shown in the previous section that we are not contaminated
by significant non-lensing correlations, we can now measurethe
weak lensing shear correlation function〈γ(θ)γ(θ + ∆θ)〉. To ob-
tain results that are independent of the initial frame of reference we
measure the tangential and radial shear correlation functions, equa-
tion (3) and equation (4) respectively. These can be estimated from
the data by

E[γt
r
γt

r
]θ =

1

Npairs

∑

pairs

γt
r
(x) γt

r
(x + θ), (26)

where the tangential shearγt and radial shearγr are rotated shear
parameters given by equation (14).γt = γrot

1 andγr = γrot
2 where

the rotation angleφ is now defined to be the angle between thex
axis and the line joining each galaxy pair. Note this rotation follows
the initial rotation that sets the full GEMS shear catalogueinto the
same reference frame. We also calculate the cross-correlation func-
tion E[γtγr]θ, which the parity invariance of weak lensing predicts
to be zero.

We calculate the shear correlations using the modified jack-
knife method detailed in Section 7.1. We useN = 25 sub-regions
in the jackknife estimate ofM = 11 logarithmic angular bins from
θ = 0.65 arcmin toθ = 25 arcmin and we include data from
the GOODS area only for angular scalesθ > 1 arcmin. This en-
sures that the shear correlation measurement at small angular scales
θ < 1 arcmin is not contaminated by the small-scale non-lensing
distortions found in the GOODS data. We show the resulting jack-
knife estimates for the tangential and radial shear correlation func-
tions in Figure 11. The theoreticalΛCDM models over-plotted are
calculated from equation (3) and equation (4) with a median galaxy
redshiftzm = 1.0 andσ8 = (0.6, 0.7, 1.0). Note that we find the
cross-correlationE[γtγr]θ to be consistent with zero on all scales,
as expected, supporting our findings that we are not contaminated
by significant non-lensing distortions.

7.3.1 Sampling variance

The GEMS mosaic samples only one area of sky and as such our re-
sults are subject to additional sampling variance errors. To address
this issue we have created 100,28 × 28 arcmin, Gaussian realisa-
tions of a shear power spectrum calculated for aσ8 = 0.75, ΛCDM
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Figure 11. Shear correlation functionsE[γtγt]θ (upper panel) and
E[γrγr ]θ (lower panel) estimated from the GEMS data using a modified
jackknife technique. The GOODS section of the GEMS survey isonly in-
cluded in measurements ofE[γγ]θ for θ > 1.0 arcmin so as not to include
the non-lensing B-mode systematics seen in the GOODS data atsmaller an-
gular scales. Over-plotted are theoreticalΛCDM models〈γtγt〉θ (upper
panel) and〈γrγr〉θ (lower panel) withσ8 = 0.6 (dashed lower),σ8 = 0.7
(solid) andσ8 = 1.0 (dashed upper).

cosmology for sources withzm = 1. We measure the shear correla-
tion function from each realisation, populating the shear field with
60 circular galaxies per square arcmin. The variance we measure
between the results from each realisation then provides us with an
estimate of the sampling variance. We calculate the sampling co-
variance matrix from the 100 independent realisations and add this
to the jackknifed covariance matrix measured from the GEMS data,
slightly overestimating the sampling variance error on small scales.
The reader should note that this method is somewhat cosmology de-
pendent but it is sufficient to assess the impact of sampling variance
on our cosmological parameter constraints in section 8.

7.4 The shear variance statistic

Space-based lensing surveys to date and early ground-basedlens-
ing results focused on the shear variance statistic, equation (5), to
analyse the data. This statistic produces the highest signal-to-noise
measurement of weak lensing shear and can be estimated from the
data by splitting the sample into N circular cells of radiusθ and cal-
culating the shear variance in excess of noise (see Brown et al. 2003
for a minimum variance estimator). As discussed in Section 7.2.2
measuring the B-mode of the shear correlation function allows one
to select angular scales above which one can be confident thatthe
presence of non-lensing distortions are insignificant. Very small
scale systematic distortions are poorly understood and aresucess-
fully ignored by the shear correlation statistic. For the shear vari-
ance statistic however, small scale non-lensing distortions are in-

cluded in the measurement at all angular scales biasing the shear
variance statistic.

To assess the impact of our residual small scale non-lensing
distortions on the shear variance statistic we can, in a similar fash-
ion to Section 7.2.2, decompose the signal into its E-mode and B-
mode components. Schneider et al. (2002) show that the shearvari-
ance of the E- and B-mode can be obtained in terms of the shear
correlation functions(ξ+, ξ−), equation (21), through

〈γ2〉Eθ =

∫

∞

0

dϑ ϑ

2θ2

[

ξ+(ϑ)S+

(

ϑ

θ

)

+ ξ−(ϑ)S−

(

ϑ

θ

)]

, (27)

〈γ2〉Bθ =

∫

∞

0

dϑ ϑ

2θ2

[

ξ+(ϑ)S+

(

ϑ

θ

)

− ξ−(ϑ)S−

(

ϑ

θ

)]

, (28)

whereS+ andS− are given in equation (39) and equation (42) of
Schneider et al. (2002). Note thatS− does not cut off at finite sep-
aration and as such one needs to include a fiducial cosmological
model to complete the integral, as in Section 7.2.2. We calculate
〈γ2〉Eθ and 〈γ2〉Bθ following the method of Pen et al. (2002), de-
tailed in Section 7.2.2, where the transformation matrixT of equa-
tion (24) is now defined by equation (27) and equation (28).

Figure 12 shows the result of our E/B mode decomposition
of the shear variance statistic revealing significant B-modes on
scalesθ < 1.5 arcmin. These B-modes most likely result from
very small scale strong non-lensing distortions that bias the shear
variance statistic even at larger angular scales. Non-lensing dis-
tortions are likely to contribute equally to the measured E-mode
making the signal appear to favour a higher value forσ8, when
compared to the large scale B-mode free shear variance measure-
ments. These large angular scales have previously been unmeasure-
able from space-based data. This demonstrates that it is vital to
perform an E/B mode decomposition to determine which angular
scales are B-mode free and therefore uncontaminated by system-
atic errors in order to obtain reliable cosmological parameter con-
straints. We will not use the shear variance statistic to constrain
cosmological parameters, even on B-mode free scales, in favour of
the shear correlation function statistic in Section 7.3 andthe shear
power spectrum that we determine in the following section.

7.5 Shear power spectrum

In addition to the shear correlation function and shear variance
statistic of the previous sections, we also quantify the two-point
statistics of the shear field by directly measuring its powerspec-
trum, Pκ, equation (1). Power spectrum estimation from cosmo-
logical data sets is a well-studied problem in the context ofmea-
suring the statistical properties of the CMB (see Efstathiou 2004
for an overview) and the methods developed in this field are com-
pletely applicable to measuring power spectra from weak lensing
data sets. Here, we use a maximum likelihood estimator (see for
example Bond et al. 1998) to reconstruct the power spectrum of
the shear field observed in the GEMS data. Our approach is based
on the prescription of Hu & White (2001) who proposed recon-
structing the three power spectra,P κκ, P ββ andP κβ as a series
of step-wise ‘band-powers’ where the quantityℓ(ℓ + 1)P ij/2π is
approximated as a constant within each band.P ββ is the power
spectrum of the B-modes whileP κβ is the cross power-spectrum
between the E- and B-modes. The maximum likelihood method
automatically accounts for irregular survey geometries, pixeliza-
tion effects and produces error estimates, via the Fisher Informa-
tion matrix (see for example Tegmark et al. 1997), which include
sampling variance and shot noise. Hu & White (2001) have tested
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Figure 12. E/B mode decomposition of the shear variance. The upper panel
shows〈γ2〉E

θ
and the fiducialΛCDM theoretical〈γ2〉 model (solid) where

σ8 = 0.7 and the median source redshiftzm = 1.0. The lower panel
shows〈γ2〉B

θ
that is consistent with zero on angular scalesθ > 1.5 arcmin.

Using a different fiducialΛCDM cosmological model to calculate〈γ2〉EB
θ

has a small effect (at the level of3 × 10−5) which can be seen from the
dotted curves where we have assumedσ8 = 0.6 (lower curve E-mode,
upper curve B-mode) andσ8 = 1.0 (upper curve E-mode, lower curve B-
mode). The significant non-lensing B-modes atθ < 1.5 arcmin indicate
residual small scale systematics that, with the shear variance statistic, are
included at all angular scales. These non-lensing distortions also contribute
to the measured E-mode making the signal appear to favour a high value
for σ8 (upper panel:ΛCDM σ8 = 1.0 theoretical model over-plotted dot-
dashed).

the maximum likelihood estimator on both Gaussian and N-body
simulations, while Brown et al. (2003) have tested it on Gaussian
simulations on scales similar to the GEMS data and have applied
the estimator to the COMBO-17 weak lensing data set.

The maximum-likelihood decomposition of the shear field
into E- and B-modes does not suffer from the problems associated
with performing the decomposition via the mass aperture statistic
(Massey et al. 2004) and only necessitates the use of a fiducial cos-
mological model to estimate the significance of the result. This is
in comparison to the E/B correlators of Section 7.2.2 and theE/B
shear variance measurements of Section 7.4 where a fiducial cos-
mological model is needed to complete integrals over the infinite
correlation function thereby invalidating their sole use for cosmo-
logical parameter estimation.

To apply the estimator to the GEMS data, we bin the galaxy
shear distribution into30 × 30 equal-size pixels of∼ 1 square

arcmin. Writing this pixelised shear distribution as a vector, d, we
then maximise the likelihood function,

− 2 ln L(C|d) = d
t
C

−1
d + Tr [lnC], (29)

using a Newton-Raphson scheme, as a function of the band-powers
of the three power spectra,P κκ, P ββ and P κβ . Here,C is the
data covariance matrix which is the sum of the cosmological signal
(equation (21) of Brown et al. (2003)) and a noise term,

N =
γrms

Npix

I, (30)

whereγrms and Npix are the root mean square shear and occu-
pation number within each pixel respectively. The errors and co-
variance of our final band-powers are approximated as the inverse
Fisher matrix, which is an excellent approximation provided that
the likelihood function is sufficiently Gaussian in the band-powers.

Figure 13 shows the results of applying the maximum like-
lihood estimator to the GEMS data along with a theoretical shear
power spectrum for aΛCDM model withΩm = 0.3 andσ8 = 0.8
with which we find reasonable agreement. The measurements of
the B-mode spectrum are mostly consistent with zero although
there is a significant detection of E-B cross-correlations on medium
scales. We suspect that these come from the time-variation of the
PSF that we have only partially accounted for with our semi-time
dependent PSF modelling. Our PSF models are designed to de-
crease the average stellar ellipticity to zero and therefore when
averaging over the whole survey, as in the measurement of the
shear correlation function, the residual PSF contamination is zero,
as can be seen in Figure 9. For the shear power spectrum mea-
surement however, where the field is decomposed into its Fourier
components, the time-dependent PSF contamination can be identi-
fied. Note that from the covariance of theP κκ measurements we
find that our band-power measurements are almost independent of
one another, apart from the slight anti-correlation of neighbouring
bands which is a natural consequence of the maximum likelihood
estimator.

8 COSMOLOGICAL PARAMETER ESTIMATION

Having measured the 2-point statistics of the shear field within
GEMS, we can now compare these measurements with theoret-
ical predictions in order to place joint constraints on the matter
density of the UniverseΩm and the normalisation of the matter
power spectrumσ8. We do this using both our correlation func-
tion measurements from Section 7.3 and the power spectrum esti-
mates from Section 7.5. We use equation (1) to calculate our the-
oretical shear power spectra and equation (3) and equation (4) to
calculate our theoretical correlation functions for a variety of cos-
mological models. For these calculations we have used the trans-
fer function of Eisenstein & Hu (1999) for the dark matter power
spectrum with an initial power spectrum slope ofn = 1. To pro-
duce the non-linear power spectrum from this, we use the fitting
formulae of Smith et al. (2003) and we fixΩm + ΩΛ = 1. We
also use the form of equation (15) for the input redshift distribu-
tion of source galaxies. We consider models in the followingre-
gions of parameter space:0.3 6 σ8 6 1.5 ; 0.1 6 Ωm 6 1.0 ;
64 6 H0 6 80 kms−1Mpc−1 and0.9 6 zm 6 1.1.

Writing our correlation function measurements as a data vec-
tor,

d = {C1(θ1), ..., C1(θn), C2(θ1), ..., C2(θn)}, (31)

for each theoretical model, we calculate
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Figure 13. The cosmic shear power spectra from GEMS. Plotted on a linear-
log scale areP κκ (circles),P ββ (crosses) andP κβ (triangles) in five band-
averaged band-powers as a function of multipole,ℓ. The errors bars are es-
timated from the Fisher matrix and theP ββ andP κβ have been slightly
horizontally displaced for clarity. The solid curve is the shear power spec-
trum estimated for aσ8 = 0.8 normalisedΛCDM model.

χ2 = [d − x]T V
−1 [d − x] , (32)

wherex = x(σ8, Ωm, H0, zm) are the theoretical correlation func-
tions ordered in a similar manner to our data vector.V = 〈dd

T 〉 is
the sum of the covariance matrix of our correlation functionmea-
surements as estimated from the data using equation (19) anda
sampling covariance matrix as detailed in section 7.3.1. The fitting
of the power spectrum measurements is done in a similar fashion
whereV, the covariance matrix of the band-power measurements,
comes from a Fisher error analysis that automatically includes sam-
pling variance. After calculatingχ2 values for each of our theoret-
ical models, we marginalise over the Hubble constant,H0 with a
prior set by the 1st year WMAP results (H0 = 72 ± 5 km s−1

Mpc−1; Spergel et al. (2003)). We also marginalise over the me-
dian redshift of the source galaxies,zm usingzm = 1.0 ± 0.1 as
estimated in Section 6.

The resulting constraints in theσ8 − Ωm plane for both the
shear correlation function and shear power spectrum estimators are
shown in Figure 14. We find good agreement between the con-
straints obtained using the two different measures: for thecorre-
lation function measurements, we find

σ8(Ωm/0.3)0.65 = 0.68 ± 0.12 (33)

while using the power spectrum analysis, we find a slightly higher
value of

σ8(Ωm/0.3)0.65 = 0.72 ± 0.10. (34)

9 CONCLUSION

In this paper we have presented the detection of weak gravitational
lensing by large-scale structure in the GEMS survey, demonstrating
that our shear correlation signal is uncontaminated by significant
non-lensing shear distortions. GEMS, imaged by the ACS on HST,

Figure 14. The likelihood surface ofσ8 andΩm from GEMS as calcu-
lated using the shear correlation function (light contour)and using the shear
power spectrum (dark contours) where we plot the1σ and2σ confidence
regions. Note the lower1σ confidence region determined from the correla-
tion function lies directly underneath that of the power spectrum.

spanning795 square arcmin, is the largest contiguous space-based
mosaic that has undergone a cosmic shear analysis to date. This has
enabled us to measure cosmic shear over a large dynamic rangeof
angular scales; from the small scales (θ = 0.65 arcmin) that are
difficult to probe with ground-based surveys, up to the largescales
(θ = 21.0 arcmin) that were previously inaccessible to space-based
surveys. Our careful analysis, where we have considered forms of
selection bias, centroid bias and calibration bias, geometric shear
distortions and PSF contamination, has yielded an unbiased3 mea-
surement of the shear correlation function uncontaminatedby non-
lensing ‘B-mode’ distortions. This has allowed us to set joint con-
straints uncontaminated by major sources of systematic errors on
the matter density of the UniverseΩm and the normalisation of the
matter power spectrumσ8 finding σ8 = 0.73 ± 0.13 for WMAP
constrainedΩm = 0.27 (Spergel et al. 2003). It is interesting to
note that the GEMS cosmological parameter constraints are very
similar to those from the COMBO-17 survey (Brown et al. 2003;
Heymans et al. 2004), a deep multi-colour survey which spans∼ 4
times the area of GEMS. This results from the higher number den-
sity of resolved galaxies in space-based data and the highersignal-
to-noise measurements of galaxy shear which are achievablewith
higher resolution data (Brown et al. in prep).

We have presented a thorough discussion on the anisotropic
ACS PSF that, for the first time with a space-based weak lensing

3 Our measurement is unbiased if we assume that the KSB+ methodap-
plied provides us with an unbiased estimate of galaxy shearγ, which has
been shown to be true with ground-based data (Erben et al. 2001). The equal
galaxy shear (on average) measured in our F606W and F850LP data sug-
gests that the impact of strongly non-Gaussian space-basedPSFs on the
KSB+ method is small supporting its use as an unbiased shear estimator
in this paper. This will be investigated further with sheared spaced-based
image simulations in a forthcoming paper.
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analysis, we have been able to characterise directly from our data
without having to assume long-term PSF stability. This assumption,
that is often applied to space-based analyses, has been tested with
the GEMS data and shown to be true for the ACS only above the
∼ 5% level. We have identified PSF temporal variation on the level
of a few percent finding consistent behaviour between the F850LP
imaging and F606W imaging, even though the F850LP PSF is quite
dramatically different from the F606W PSF. We have tested the
success of our PSF correction by measuring the star-galaxy cross-
correlation and the B-type shear correlator which were bothfound
to be consistent with zero on angular scalesθ > 0.2 arcmin.
Our semi-time-dependent method for PSF modelling therefore ad-
equately corrects for the varying PSF distortion when we consider
weak lensing shear correlations as a function of relative galaxy po-
sition averaged over the whole GEMS mosaic. When we measure
the shear power spectrum however, a statistic which is dependent
on galaxy shear as a function of absolute galaxy position, wefind
a significant detection of E-B cross-correlations most likely reveal-
ing the impact of not producing a fully time-dependent PSF correc-
tion model. It is currently unclear where the variation in the GEMS
ACS PSF arises but its presence, also seen by Jee et al. (2004)and
Rhodes et. al. (in prep), suggests that future HST cosmic shear sur-
veys should be preferentially observed in sequence to minimise the
impact of PSF instabilities.

We have measured the commonly used top-hat shear variance
statistic, performing an E/B mode decomposition. We find signif-
icant non-lensing B-mode distortions at angular scalesθ < 1.5
arcmin in contrast to the E/B decomposition of the shear corre-
lation function where the B-modes were found to be consistent
with zero at angular scalesθ > 0.2 arcmin. This shows that
the top-hat shear variance statistic becomes contaminatedby very
small scale non-lensing distortions out to fairly high angular scales,
strongly biasing the final result. Note that this effect is also seen in
Van Waerbeke et al. (2004). The shear correlation function does not
suffer from this contamination as the very small scale non-lensing
correlations are removed from the analysis and it is therefore this
statistic along with the shear power spectrum that we favourfor
cosmological parameter estimation. We urge future cosmic shear
studies to perform E/B mode decompositions to test for non-lensing
distortions and employ statistical analyses other than theeasily bi-
ased top-hat shear variance statistic.

9.1 Comparison with other cosmic shear surveys

Figures 15 and 16 compare the GEMS results with the most up-
to-date results from other cosmic shear surveys that have placed
constraints onσ8 andΩm. The cosmic shear signal scales with the
depth of the survey and so we have introduced a median redshift
scaling4 of the data points and errors to bring the different results in
line with a survey of median redshiftzm = 1.0. For the shear cor-
relation function (Figure 15) we scale byz2

m, as suggested by the
numerical simulations of Barber (2002) and for the top-hat shear
variance (Figure 16) we scale byz1.85

m (Rhodes et al. 2004). We

4 For the results from Chang et al. (2004) we scale assuming themedian
radio source redshift to bezm = 2.0. For the results from Casertano et al.
(2003) we convert the measurement from the top-hat variancein square
cells to the top-hat variance in circular cells using a1/

√
π scaling

(Bacon et al. 2000) and then scale the results using the median redshift de-
rived by Refregier et al. (2002) for the same data set. For theJarvis et al.
(2003) results we scale byzm = 0.6 (private communication) and for all
other results, we use the quoted median redshift.

Figure 15. Comparison of the total shear correlation functionE[γγ]θ as
measured from GEMS along with the most up-to-date shear correlation
measurements from the other groups indicated. Over-plotted are theoreti-
cal ΛCDM models for azm = 1 survey withσ8 = 0.7 (lower) and
σ8 = 1.0 (upper). Note all data points and errors have been scaled to a
zm = 1 survey using az2

m redshift scaling.

Figure 16. Comparison of the top-hat shear varianceE[γ2]θ as measured
from GEMS along with the most up-to-date top-hat shear variance mea-
surements from the other groups indicated. We show only the B-mode free
GEMS top-hat shear variance results withθ > 1 arcmin. Over-plotted are
theoreticalΛCDM models for azm = 1 survey withσ8 = 0.7 (lower)
andσ8 = 1.0 (upper). Note all data points and errors have been scaled to a
zm = 1 survey using az1.85

m redshift scaling.
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preferentially show the shear correlation function for surveys that
have measured the top-hat shear variance in addition, due toour
concern with the use of the top-hat shear variance statistic. We only
show the B-mode free GEMS top-hat shear variance results with
θ > 1.5 arcmin. These comparisons show broad agreement be-
tween the shear correlation measurements and a poorer agreement
between the top-hat shear variance measurements. As discussed in
Section 7.4, the top-hat shear variance appears to be easilycon-
taminated at large scales by small scale systematic errors and we
propose that this contamination, not always quantified, is at least
a partial cause of the differing results. Other possibilities are po-
tential calibration biases arising from differences between the vari-
ous shear measurement methods (compare for example Erben etal.
2001 and Bacon et al. 2001), differences in the median redshift de-
termination and sampling variance.

The results shown in Figure 15 and Figure 16 yield measure-
ments ofσ8 ranging fromσ8 ≃ 0.7 to σ8 ≃ 1.1 for a value of
Ωm = 0.3. This can be compared with results from the WMAP
CMB experiment (Spergel et al. 2003) that findsσ8 = 0.9 ± 0.1
from the WMAP data alone andσ8 = 0.75 ± 0.08 when the
WMAP data is combined with other data sets. Results from clus-
ter abundance measurements range fromσ8 = 0.7 to σ8 = 1.0
(see Pierpaoli et al. 2003, who findσ8 = 0.77 ± 0.05, and refer-
ences therein). Our measurement is at the lower end of all these
results which we may expect in light of the fact that the CDFS is
a factor of two under-dense in massive galaxies (Wolf et al. 2003).
If we assume that massive galaxies trace the underlying darkmat-
ter distribution, then we would expect a low measurement ofσ8

from this field when compared to the globalσ8 value. Combining
GEMS data with other wide-field space-based mosaics, such asthe
COSMOS survey5 and the ACS pure parallel survey, will reduce
the effects of sampling variance in order to obtain a good estimate
of the Universal value ofσ8 from HST.
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